Soal dan Pembahasan Matriks Problem (1-15)
Hai, kali ini kuyAmbis akan membagikan Soal dan Pembahasan Matriks Problem (1-15) untuk persiapan ulangan harian, ulangan akhir, SBMPTN, UTBK, SIMAK UI, TPS, dan TKA.
Silahkan download versi PDF di sini (hanya soal) BELUM TERSEDIA
Problem 1
Jika \(\displaystyle A = \begin{bmatrix}a & b\\b & x\end{bmatrix}\) dan \(\displaystyle B = \begin{bmatrix}bx & a\\b & x\end{bmatrix}\), maka jumlah kuadrat semua akar persamaan \(|A| = |B|\) adalah ...- \(\displaystyle \left(\frac{a}{b}\right)^2 - 2(a - b)\)
- \(\displaystyle \left(\frac{b}{a}\right)^2 - 2(a - b)\)
- \(\displaystyle \left(\frac{a}{b}\right)^2 - 2(b - a)\)
- \(\displaystyle \left(\frac{b}{a}\right)^2 - 2(b - a)\)
- \(\displaystyle \frac{a}{b} - 2(a - b)\)
Problem 2
Jika \(\displaystyle A = \begin{bmatrix}1 & 2\\1 & 3\end{bmatrix}\), \(\displaystyle B = \begin{bmatrix}4 & 1\\1 & 3\end{bmatrix}\) dan matriks \(C\) memenuhi \(AC = B\), maka \(|C| = \) ...- \(1\)
- \(6\)
- \(9\)
- \(11\)
- \(12\)
Problem 3
Jika \(\displaystyle A = \begin{bmatrix}-1 & 0\\ 0 & -1\end{bmatrix}\) dan \(\displaystyle I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\), maka \(A^2 - 6A + 3I = \) ...- \(\displaystyle -8A\)
- \(\displaystyle -10A\)
- \(\displaystyle 2A\)
- \(\displaystyle 4A\)
- \(\displaystyle 10A\)
Problem 4
Diketahui matriks \(A = (a_{ij})\), yaitu
\begin{align*}
a_{ij} = \begin{cases}i + j, \text{ jika } i > j \\ 2i - j, \text{ jika } i = j \\ 3i + 2j, \text{ jika } i < j \end{cases}
\end{align*}
dengan \(i = 1, 2, 3, 4, 5\) dan \(j = 1, 2, 3, 4\). Ordo matriks \(A\) adalah ...
- \(\displaystyle 3\times4\)
- \(\displaystyle 4\times4\)
- \(\displaystyle 4\times5\)
- \(\displaystyle 5\times4\)
- \(\displaystyle 5\times5\)
Problem 5
Diketahui matriks \(\displaystyle P = \begin{bmatrix}-2 & 1 \\ 1 & 3\end{bmatrix}\), \(Q = \begin{bmatrix} 1 & -2 \\ 3 & -1\end{bmatrix}\), \(R = \begin{bmatrix}2 & -1 \\ 1 & -2\end{bmatrix}\), dan \(\displaystyle S = \begin{bmatrix}3 & -1 \\ -1 & 3\end{bmatrix}\). Matriks yang simetris adalah...- \(\displaystyle \text{hanya } P \text{ dan } Q\)
- \(\displaystyle \text{hanya } P \text{ dan } S\)
- \(\displaystyle \text{hanya } Q \text{ dan } S\)
- \(\displaystyle \text{hanya } R\)
- \(\displaystyle \text{hanya } S\)
Problem 6
Jika matriks \(\displaystyle P=\begin{bmatrix} 1 & 2\\ 3 & 2 \end{bmatrix}\) dan \(\displaystyle I\) matriks identitas yang berordo sama dengan \(\displaystyle P\) maka hasil kali akar persamaan det \(\displaystyle ( P-xI) =0\) adalah ...- \(\displaystyle -6\)
- \(\displaystyle -4\)
- \(\displaystyle -3\)
- \(\displaystyle 3\)
- \(\displaystyle 4\)
Problem 7
Jika matriks \(\displaystyle P=\begin{bmatrix} 3 & 1\\ 4 & 2 \end{bmatrix}\) dan \(\displaystyle Q=\begin{bmatrix} 1 & 0\\ -2 & 3 \end{bmatrix}\) serta \(\displaystyle P^{-1}\) invers matriks \(\displaystyle P\), maka determinan untuk matriks \(\displaystyle QP^{-1}\) adalah ...- \(\displaystyle \frac{3}{2}\)
- \(\displaystyle 3\)
- \(\displaystyle 6\)
- \(\displaystyle \frac{19}{3}\)
- \(\displaystyle 19\)
Problem 8
Nilai semua \(\displaystyle x\) sehingga matriks \(\displaystyle \begin{bmatrix} \sqrt{x^{2} -1} & 1\\ x & 2 \end{bmatrix}\) mempunyai invers adalah ...- \(\displaystyle x\neq -\frac{4}{3}\) dan \(\displaystyle x\neq \frac{4}{3}\)
- \(\displaystyle x\neq -\sqrt{\frac{4}{3}}\) dan \(\displaystyle x\neq \sqrt{\frac{4}{3}}\)
- \(\displaystyle \sqrt{\frac{4}{3}} < x\leq -1\) atau \(\displaystyle 1\leq x < \sqrt{\frac{4}{3}}\)
- \(\displaystyle -\sqrt{\frac{4}{3}} < x\leq -1\) atau \(\displaystyle 1\leq x < \sqrt{\frac{4}{3}}\)
- \(\displaystyle x< −\sqrt{\frac{4}{3}}\) atau \(\displaystyle -\sqrt{\frac{4}{3}} < x\leq -1\) atau \(\displaystyle 1\leq x < \sqrt{\frac{4}{3}}\) atau \(\displaystyle x > \sqrt{\frac{4}{3}}\)